Rabu, 15 April 2015

INDIKATOR AIR DGN GERBANG

SUPPLY DNGN PNYTABIL TR

PENYEARAH GEL. PENUH

PENGUAT MIC
MODULASI FREQUENSI DAN MODULASI AMPLITUDO

       I.            PENGERTIAN MODULASI
Modulasi adalah proses pencampuran dua sinyal menjadi satu sinyal. Biasanya sinyal yang dicampur adalah sinyal berfrekuensi tinggi dan sinyal berfrekuensi rendah. Dengan memanfaatkan karakteristik masing-masing sinyal, maka modulasi dapat digunakan untuk mentransmisikan sinyal informasi pada daerah yang luas atau jauh. Sebagai contoh Sinyal informasi (suara, gambar, data), agar dapat dikirim ke tempat lain, sinyal tersebut harus ditumpangkan pada sinyal lain. Dalam konteks radio siaran, sinyal yang menumpang adalah sinyal suara, sedangkan yang ditumpangi adalah sinyal radio yang disebut sinyal pembawa (carrier). Jenis dan cara penumpangan sangat beragam. Yaitu untuk jenis penumpangan sinyal analog akan berbeda dengan sinyal digital. Penumpangan sinyal suara juga akan berbeda dengan penumpangan sinyal gambar, sinyal film, atau sinyal lain.
Tujuan Modulasi
Transmisi menjadi efisien atau memudahkan pemancaran.
Masalah perangkat keras menjadi lebih mudah.
Menekan derau atau interferensi.
Untuk memudahkan pengaturan alokasi frekuensi radio.
Untuk multiplexing, proses penggabungan beberapa sinyal informasi untuk disalurkan secara bersama-sama melalui satu kanal transmisi.
Fungsi Modulasi
Sinyal informasi biasanya memiliki spektrum yang rendah dan rentan untuk tergangu oleh noise. Sedangakan pada transmisi dibutuhkan sinyal yang memiliki spektrum tinggi dan dibutuhkan modulasi untuk memindahkan posisi spektrum dari sinyal data, dari pita spektrum yang rendah ke spektrum yang jauh lebih tinggi. Hal ini dilakukan pada transmisi data tanpa kabel (dengan antena), dengan membesarnya data frekuensi yang dikirim maka dimensi antenna yang digunakan akan mengecil.


    II.            PENGERTIAN MODULASI FREKUENSI
Modulasi Frekuensi (Frequency Modulation = FM ) adalah proses menumpangkan sinyal informasi pada sinyal pembawa (carrier) sehingga frekuensi gelombang pembawa (carrier) berubah sesuai dengan perubahan simpangan (tegangan) gelombang sinyal informasi. Jadi sinyal informasi yang dimodulasikan (ditumpangkan) pada gelombang pembawa menyebabkan perubahan frekuensi gelombang pembawa sesuai dengan perubahan tegangan (simpangan) sinyal informasi. Pada modulasi frekuensi sinyal informasi mengubah-ubah frekuensi gelombang pembawa, sedangkan amplitudanya konstan selama proses modulasi.
Modulasi frekuensi adalah salah satu bentuk modulasi dimana frekuensi sinyal pembawa divariasikan secara proposional berdasarkan amlitudo sinyal informasi. Amplitudo sinyal pembawa tetap konstan. Contoh dari FM adalah frekuensi radio yang sekarang lebih sering digunakan radio pada umumnya.
Modulasi frekuensi merupakan modulasi analog non-linier, disebut juga modulasi sudut. Disebut non-linier karena frekuensi sinyal pembawa bisa berubah-ubah. Pada modulasi ini, besarnya amplitudo sinyal informasi mempengaruhi besarnya frekuensi carrier tanpa mempengaruhi besarnya amplitudo sinyal pembawa.
Rentang frekuensi FM adalah 88 MHz – 108 MHz sehingga dikategorikan sebagai Very High Frequency (VHF), sedangkan panjang gelombangnya dibawah 1.000 KHz sehingga jangkauan sinyalnya tidak jauh.
Modulasi frekuensi memiliki bandwith yang lebih besar daripada amplitudo modulasi sehingga bisa menghasilkan suara stereo dengan menyatukan beberapa saluran audio pada satu gelombang carrier. FM lebih tahan terhadap gangguan sehingga dipilih sebagai modulasi standar untuk frekuensi tinggi
Keuntungan FM antara lain, potensi gangguan lebih kecil (kualitas lebih baik) dan daya yang dibutuhkan lebih kecil.


 III.            PENGERTIAN MODULASI AMPLITUDO
Pengertian Modulasi Amplitudo Modulasi amplitudo (AM) mempunyai pengertian yaitu metode modulasi di mana amplitudo gelombang carrier (pembawa) dibuat bervariasi menurut harga sesaat dari sinyal pemodulasi. Dengan kata lain, bila gelombang pembawa dimodulasikan ke amplitudo, maka amplitudo bentuk gelombang tegangan pembawa dibuat berubah sesuai dengan tegangan yang memodulasi. Jenis modulasi ini kemudian disebut sebagai modulasi amplitudo (AM). Dalam sistem modulasi amplitudo sinyal suara ditumpangkan pada frekuensi pembawa yang berupa gelombang radio, sehingga pada sistem ini amplitudonya yang berubah-ubah. Kelemahan sistem modulasi amplitudo adalah mudah terganggu oleh derau cuaca, akan tetapi modulasi amplitudo ini dapat menjangkau jarak jauh dan dapat dipantulkan oleh lapisan ionosfer. Namun dalam penggunaan telemetri pita lebar, jaringan penggandeng, penyesuai dan tapis dapat mengubah amplitudo dan fase pita sisi sinyal AM, yang mengakibatkan distorsi. Tapis yang digunakan untuk membatasi lebar pita sinyal dalam penggunaan telemetri pita lebar mengakibatkan modulasi amplitudo dalam sinyal akibatnya tidak adanya pita sisi yang tersaring. Namun tingkat-tingkat penguat mode campuran kelas C dapat memotong sinyal yang membangkitkan pita sisi di luar pita lewat tapis. Panjang gelombang adalah jarak antara titik-titik berfase sama dalam siklus-siklus berurutan yang diukur dalam suatu waktu dalam arah penjalaran dan perambatan gelombang. Panjang gelombang sama dengan jarak yaang ditempuh oleh gelombang dalam satu periode osilasi.

  IV.            PERBEDAAN FM DAN AM
Modulasi Ampitudo
o   Adalah salah satu bentuk modulasi dimana amplitudo sinyal pembawa di variasikan secara proposional berdasarkan sinyal pemodulasi (sinyal informasi).
o   Frekuensi sinyal pembawa tetap konstan.
Contoh dari amplitude modulation adalah metode pertama kali yang digunakan untuk menyiarkan radio komersil.
Kelemahannya:
1.      Dapat terganggu oleh gangguan atmosfir
2.      Bandwith yang sempit juga membatasi kualitas suara yang dapat dipancarkan.

Modulasi Frekuensi
o   Suatu bentuk modulasi dimana frekuensi sinyal pembawa divariasikan secara proposional berdasarkan amplitudo sinyal input.
o   Amplitudo sinyal pembawa tetap konstan.
Kelebihan dari frequency modulation adalah:
1.      Modulasi frekuensi memerlukan bandwidth yang lebih lebar daripada modulasi amplitudo.
2.      FM lebih tahan terhadap gangguan sehingga di pilih untuk sebagai modulasi standart untuk frekuensi tinggi.
3.      Noise lebih kecil (kualitas lebih baik)
4.      Daya yang dibutuhkan lebih kecil

Gelombang AM (Amplitudo Modulation) memiliki range jangkauan yang lebih luas daripada gelombang FM (Frekuensi Modulation). Hal tersebut dikarenakan gelombang AM memiliki panjang gelombang yang lebih panjang dibanding gelombang FM. Akan tetapi dalam perjalanannya mencapai penerima, gelombang akan mengalami redaman (fading) oleh udara, mendapat interferensi dari frekuensi-frekuensi lain, noise, atau bentuk-bentuk gangguan lainnya. Gangguan-gangguan itu umumnya berupa variasi amplitudo sehingga mau tidak mau akan mempengaruhi amplitudo gelombang yang terkirim. Akibatnya, informasi yang terkirim pun akan berubah dan mengurangi mutu informasi yang diterima.
Berbeda dengan gelombang AM, gelombang FM bebas dari pengaruh gangguan udara, bandwidth (lebar pita) yang lebih besar, dan fidelitas yang tinggi. Frekuensi yang dialokasikan untuk siaran FM berada diantara 88 – 108 MHz, dimana pada wilayah frekuensi ini secara relatif bebas dari gangguan baik atmosfir maupun interferensi yang tidak diharapkan. Selain itu, Saluran siar FM standar menduduki lebih dari sepuluh kali lebar bandwidth (lebar pita) saluran siar AM. Hal ini disebabkan oleh struktur sideband nonlinear yang lebih kompleks dengan adanya efek-efek (deviasi) sehingga memerlukan bandwidth yang lebih lebar dibanding distribusi linear yang sederhana dari sideband-sideband dalam sistem AM.
Kesimpulan setelah melihat hasil analisa komparasi antara gelombang FM dan AM yang menunjukkan bahwa walaupun gelombang AM dapat menembus jangkauan yang lebih luas akan tetapi tidak seperti gelombang FM yang lebih tahan terhadap noise, maka gelombang FM dengan banyak karakteristik yang tidak dimiliki gelombang AM merupakan jenis modulasi yang lebih baik untuk digunakan dalam transver data audio dari pada gelombang AM.


SUMBER:
http://meka-tronika.blogspot.com/2013/07/modulasi-frekuensi.html
http://www.slideshare.net/dewo191/modulasi-amplitudo

http://muhammadjami.blogspot.com/2012/09/pengertian-modulasi.html

Rabu, 01 April 2015

SEJARAH PERKEMBANGAN KOMPUTER GENERASI 1 - 5


Sejarah Perkembangan Komputer Sebelum tahun 1940 Sejak dahulu kala, proses pengolahan data telah dilakukan oleh manusia. Manusia juga menemukan alat-alat mekanik dan elektronik untuk membantu manusia dalam penghitungan dan pengolahan data supaya dapat mendapatkan hasil lebih cepat. Komputer yang kita temui saat ini adalah suatu evolusi panjang dari penemuan penemuan manusia sejak dahulu kala berupa alat mekanik mahupun elektronik.
Saat ini, komputer dan peranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan yang lebih dari sekedar perhitungan matematik biasa. Di antaranya adalah sistem komputer di pasar raya yang mampu membaca kod barang belanjaan, pusat telefon yang menangani jutaan panggilan dan komunikasi, serta jaringan komputer dan internet yang menghubungkan berbagai tempat di dunia. Komputer ada 4 golongan yaitu:
1.  Peralatan manual: Iaitu peralatan pengolahan data yang sangat sederhana, dan faktor terpenting dalam pemakaian alat adalah menggunakan tenaga tangan manusia
2. Peralatan Mekanik: Iaitu peralatan yang sudah berbentuk mekanik yang digerakkan dengan tangan secara manual
3. Peralatan Mekanik Elektronik: Peralatan mekanik yang digerakkan oleh secara otomatis oleh motor elektronik
4. Peralatan Elektronik: Peralatan yang bekerjanya secara elektronik penuh 

Beberapa peralatan yang telah digunakan sebagai alat hitung sebelum ditemukannya komputer :
a. Abacus

Muncul sekitar 5000 tahun yang lalu di Asia kecil dan masih digunakan di beberapa tempat hingga saat ini, dapat dianggap sebagai awal mula mesin komputasi. Alat ini memungkinkan penggunanya untuk melakukan perhitungan menggunakan biji bijian geser yang diatur pada sebuh rak. Para pedagang di masa itu menggunakan abacus untuk menghitung transaksi perdagangan. Seiring dengan munculnya pensil dan kertas, terutama di Eropa, Abacus kehilangan popularitasnya.
b. Kalkulator roda numerik ( numerical wheel calculator )
Setelah hampir 12 abad, muncul penemuan lain dalam hal mesin komputasi. Pada tahun 1642, Blaise Pascal (1623-1662), yang pada waktu itu berumur 18 tahun, menemukan apa yang ia sebut sebagai kalkulator roda numerik (numerical wheel calculator) untuk membantu ayahnya melakukan perhitungan pajak.
c. Kalkulator roda numerik 2 

Tahun 1694 seorang matematikawan dan filsuf Jerman, Gottfred Wilhem von Leibniz (1646-1716) memperbaiki Pascaline dengan membuat mesin yang dapat mengalikan. Sama seperti pendahulunya, alat mekanik ini bekerja dengan menggunakan roda-roda gerigi. Dengan mempelajari catatan dan gambar-gambar yang dibuat oleh Pascal, Leibniz dapat menyempurnakan alatnya.
d. Kalkulator Mekanik 

Charles Xavier Thomas de Colmar menemukan mesin yang dapat melakukan empat fungsi aritmatik dasar. Kalkulator mekanik Colmar, arithometer, mempresentasikan pendekatan yang lebih praktis dalam kalkulasi karena alat tersebut dapat melakukan penjumlahan, pengurangan, perkalian, dan pembagian. Dengan kemampuannya, arithometer banyak dipergunakan hingga masa Perang Dunia I. Bersama-sama dengan Pascal dan Leibniz, Colmar membantu membangun era komputasi mekanikal.

Saat ini, komputer sudah semakin canggih. Tetapi, sebelumnya komputer tidak sekecil, secanggih, sekeren dan seringan sekarang. Dalam sejarah komputer, ada 5 generasi dalam sejarah komputer.
1.   Generasi Pertama (1944-1959)

 Tabung hampa udara sebagai penguat sinyal, merupakan ciri khas komputer generasi pertama. Pada awalnya, tabung hampa udara (vacum-tube) digunakan sebagai komponen penguat sinyal. Bahan bakunya terdiri dari kaca, sehingga banyak memiliki kelemahan, seperti: mudah pecah, dan mudah menyalurkan panas. Panas ini perlu dinetralisir oleh komponen lain yang berfungsi sebagai pendingin. Dan dengan adanya komponen tambahan, akhirnya komputer yang ada menjadi besar, berat dan mahal. Pada tahun 1946, komputer elektronik didunia yang pertama yakni ENIAC sesai dibuat. Pada komputer tersebut terdapat 18.800 tabung hampa udara dan berbobot 30 ton. begitu besar ukurannya, sampai-sampai memerlukan suatu ruangan kelas tersendiri. Pada gambar nampak komputer ENIAC, yang merupakan komputer elektronik pertama didunia yang mempunyai bobot seberat 30 ton, panjang 30 M dan tinggi 2.4 M dan membutuhkan daya listrik 174 kilowatts.
2.   Generasi Kedua (1960-1964)

Transistor merupakan ciri khas komputer generasi kedua. Bahan bakunya terdiri atas tiga lapis, yaitu: “basic”, “collector” dan “emmiter”. Transistor merupakan singkatan dari Transfer Resistor, yang berarti dengan mempengaruhi daya tahan antara dua dari tiga lapisan, maka daya (resistor) yang ada pada lapisan berikutnya dapat pula dipengaruhi. Dengan demikian, fungsi transistor adalah sebagai penguat sinyal. Sebagai komponen padat, tansistor mempunyai banyak keunggulan seperti misalnya: tidak mudah pecah, tidak menyalurkan panas. dan dengan demikian, komputer yang ada menjadi lebih kecil dan lebih murah. Pada tahun 1960-an, IBM memperkenalkan komputer komersial yang memanfaatkan transistor dan digunakan secara luas mulai beredar dipasaran. Komputer IBM- 7090 buatan Amerika Serikat merupakan salah satu komputer komersial yang memanfaatkan transistor. Komputer ini dirancang untuk menyelesaikan segala macam pekerjaan baik yang bersifat ilmiah ataupun komersial. Karena kecepatan dan kemampuan yang dimilikinya, menyebabkan IBM 7090 menjadi sangat popular. Komputer generasi kedua lainnya adalah: IBM Serie 1400, NCR Serie 304, MARK IV dan Honeywell Model 800.
3. Generasi Ketiga (1964-1975)

Konsep semakin kecil dan semakin murah dari transistor, akhirnya memacu orang untuk terus melakukan pelbagai penelitian. Ribuan transistor akhirnya berhasil digabung dalam satu bentuk yang sangat kecil. Secuil silicium yag mempunyai ukuran beberapa milimeter berhasil diciptakan, dan inilah yang disebut sebagai Integrated Circuit atau IC-Chip yang merupakan ciri khas komputer generasi ketiga.
Cincin magnetic tersebut dapat di-magnetisasi secara satu arah ataupun berlawanan, dan akhirnya men-sinyalkan kondisi “ON” ataupun “OFF” yang kemudian diterjemahkan menjadi konsep 0 dan 1 dalam system bilangan biner yang sangat dibutuhkan oleh komputer. Pada setiap bidang memory terdapat 924cincin magnetic yang masing-masing mewakili satu bit informasi. Jutaan bit informasi saat ini berada didalam satu chip tunggal dengan bentuk yang sangat kecil.
Komputer yang digunakan untuk otomatisasi pertama dikenalkan pada tahun 1968 oleh PDC 808, yang memiliki 4 KB (kilo-Byte) memory dan 8 bit untuk core memory. Dapat digunakan untuk multiprogram. Contoh komputer generasi ketiga adalah Apple II, PC, dan NEC PC.
4. Generasi Keempat (1975-Sekarang)

Komputer generasi keempat masih menggunakan IC/chip untuk pengolahan dan penyimpanan data. Komputer generasi ini lebih maju karena di dalamnya terdapat beratus ribu komponen transistor. Proses pembuatan IC komputer generasi ini dinamakan pengintegrasian dalam skala yang sangat besar. Pengolahan data dapat dilakukan dengan lebih cepat atau dalam waktu yang singkat. Media penyimpanan komputer generasi ini lebih besar dibanding generasi sebelumnya. Komputer generasi ini sering disebut komputer mikro. Contohnya adalah PC (Personal Computer). Teknologi IC komputer generasi ini yang membedakan antara komputer mikro dan komputer mini serta main frame. Beberapa teknologi IC pada generasi ini adalah Prosesor 6086, 80286, 80386, 80486, Pentium I, Celeron, Pentium II, Pentium III, Pentium IV, Dual Core, dan Core to Duo. Generasi ini juga mewujudkan satu kelas komputer yang disebut komputer super.
5. Generasi Kelima (Sekarang – Masa depan)

Generasi kelima dalam sejarah evolusi komputer merupakan komputer impian masa depan. Ia diperkirakan mempunyai lebih banyak unit pemprosesan yang berfungsi bersamaan untuk menyelesaikan lebih daripada satu tugas dalam satu masa.
Komputer ini juga mempunyai ingatan yang amat besar sehingga memungkinkan penyelesaian lebih dari satu tugas dalam waktu bersamaan. Unit pemprosesan pusat juga dapat berfungsi sebagai otak manusia. Komputer ini juga mempunyai kepandaian tersendiri, merespon keadaan sekeliling melalui penglihatan yang bijak dalam mengambil sesuatu keputusan bebas dari pemikiran manusia yang disebut sebagai artificial intelligence.
Banyak kemajuan di bidang desain komputer dan teknologi semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model von Neumann. Model von Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil.